MARTY, Stanford's autonomous, electric DeLorean, at Thunderhill Raceway. Courtesy David Bush

Stanford engineers unveil self-driving electric DeLorean

It may not time travel, but Stanford University engineers unveiled a DeLorean modified to be self-driving, electric, and drift like a pro driver on Tuesday.

The DeLorean is nicknamed MARTY, which stands for Multiple Actuator Research Test bed for Yaw control. It was developed by Stanford mechanical engineering professor Chris Gerdes and his students to research how cars perform in extreme situations and ultimately develop better safety mechanisms in cars.

The engineers’ announcement of MARTY was timely as Tuesday was the future date that Marty McFly and Doc Brown use their time machine DeLorean to travel to in the 1989 film “Back to the Future Part II.”

“We want to design automated vehicles that can take any action necessary to avoid an accident,” Gerdes said in a statement. “The laws of physics will limit what the car can do, but we think the software should be capable of any possible maneuver within those limits. MARTY is another step in this direction, thanks to the passion and hard work of our students.”

According to graduate student Jonathan Goh who was in charge of engineering MARTY’s drifting technique, the car can lock itself into a perfectly circular donut at a large drift angle. This is the first step on the path to a self-driving car that can deal with extreme situations, according to Stanford officials.

“The sublime awesomeness of riding in a DeLorean that does perfect, smoke-filled donuts by itself is a mind-bending experience that helps you appreciate that we really are living in the future,” Goh said in a statement.

MARTY was built in partnership with Silicon Valley electric vehicle tech startup Renovo Motors, which gave the Stanford team early access to a brand new platform that allows precise control of the gearboxes and rear wheels during drifting.

According to Goh, the car’s systems are managed by a central application program interface, which allowed the integration process of replacing the original gasoline engine to happen over the course of just a few months.

Ultimately, Gerdes and the seven students involved in Gerdes’ Dynamic Design Lab hope to program the car to be able to drift around a track, interact with a car steered by a human, and be able to negotiate tight turns and obstacles when required.

“A drift competition is the perfect blend of our two most important research questions: how to control the car precisely and how to design automated vehicles that interact with humans,” Gerdes said in a statement.

“While we aren’t picturing a future where every car produces clouds of white tire smoke during the daily commute, we do want automated vehicles that can decipher the subtle cues drivers give when driving and incorporate this feedback when planning motion.”

 

If you find our journalism valuable and relevant, please consider joining our Examiner membership program.
Find out more at www.sfexaminer.com/join/

Just Posted

San Francisco 49ers fall flat at home

Coming off of a massive 48-46 win over New Orleans last weekend, the 49ers felt the direct impact of a game that took a physical toll on their team.

More development headed for Mission Bay

Area could accommodate up to 550 more units of affordable housing, Warriors hotel project

Increased enforcement drives up citations for Valencia bike lane violations

If you ticket, they will come. The City increased traffic cops along… Continue reading

New tenant protections legislation being introduced

Advocates say many landlords skirt buyout laws by failing to report or using aggressive tactics

City could try to stop Lyft from dropping cash payments for bikeshare

A city supervisor hopes to force Lyft to keep accepting cash for… Continue reading

Most Read